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Solution Set 7 (compiled by Daniel Larson)

1. Griffiths 6.17 In a linear material, we know H is proportional to B: B = µH = µ0(1 + χm)H, so for a long
wire it should be circumferential. We can then use Ampere’s law to find H from the free current, and then get
B from H. As usual, we draw an amperian loop around the wire:

∮
H · dl = 2πsH(s) = Ifenc =

{
I(s2/a2), (s < a)
I (s > a)

H(s) =

{
Is

2πa2 , (s < a)
I

2πs , (s > a)
⇒ B(s) =

{
µ0(1+χm)Is

2πa2 , (s < a)
µ0I
2πs , (s > a)

.

In a linear material, Jb = χmJf = χm
I

πa2 (using the fact that I is uniform over the area of the wire) and points
in the same direction as I. Kb = M× n̂ = χmH(a)× n̂ ⇒ Kb = χmI

2πa in the direction opposite from I (using
the right-hand-rule). The total bound current is Ib = πa2Jb + 2πaKb = χmI − χmI = 0 as it must be.

2. Griffiths 6.21

(a) We need to compute the work it takes to bring the magnetic dipole in from infinity to the origin and
rotate it to its final configuration. First, bring the dipole to the origin along a trajectory in which m is
always perpendicular to B so that there is no force on the dipole and hence no work done. For simplicity,
imagine B is uniform and points in the ŷ direction. Then we can slide a dipole (pointing in the x̂
direction) in along the x-axis. All the work comes from rotating the dipole in the presence of the B-field.
The torque exerted by the B-field is N = m × B = mB sin θ ẑ where θ is the angle between m and B
(initially π/2); this is opposite the torque we must exert in order to rotate the dipole. So to move the
dipole from an angle of π/2 with respect to B to some other angle θ we must do an amount of work
U =

∫ θ

π/2
mB sin θ′ dθ′ = mB(− cos θ′)|θπ/2 = −mB cos θ = −m ·B.

(b) We can put the first diple at the origin. It produces a magnetic field B1 = µ0
4πr3 [3(m1 · r̂) r̂−m1] at

any location r. The second dipole, located at r, interacts with this magnetic field as in part (a). Thus
U = −m2 ·B1 = − µ0

4πr3 [3(m1 · r̂)m2 · r̂−m2 ·m1] = µ0
4πr3 [m1 ·m2 − 3(m1 · r̂)(m2 · r̂)].

(c) From the figure, mi · r̂ = mi cos θi for i = 1 or 2, and m1 ·m2 = m1m2 cos(θ1−θ2) = m1m2(cos θ1 cos θ2+
sin θ1 sin θ2). So U = µ0m1m2

4πr3 [cos(θ1 − θ2)− 3 cos θ1 cos θ2] = µ0m1m2
4πr3 [sin θ1 sin θ2 − 2 cos θ1 cos θ2]. A sta-

ble configuration occurs when the energy is at a minimum.

∂U

∂θ1
=

µ0m1m2

4πr3
(cos θ1 sin θ2 + 2 sin θ1 cos θ2) = 0 ⇒ 2 sin θ1 cos θ2 = − cos θ1 sin θ2

∂U

∂θ2
=

µ0m1m2

4πr3
(sin θ1 cos θ2 + 2 cos θ1 sin θ2) = 0 ⇒ 2 sin θ1 cos θ2 = −4 cos θ1 sin θ2

So we need cos θ1 sin θ2 = sin θ1 cos θ2 = 0. This will happen for either sin θ1 = sin θ2 = 0 ⇒ (i) →→ or
(ii) →←; or if cos θ1 = cos θ2 = 0 ⇒ (iii) ↑↑ or (iv) ↑↓. We know that the lowest energy configuration
will have m lined up with B. This only happens in (i) and (iv), so they are the stable minima. To find
the absolute minimum, we need to calculate U . For situation (i) we have θ1 = θ2 = 0 so U = µ0m1m2

4πr3 (−2)
whereas for (iv) we have θ1 = −θ2 = π/2, so U = µ0m1m2

4πr3 (−1). Thus the most stable configuration is the
one with the lowest energy, namely (i) where the magnetic moments are lined up along the line joining
them: →→.

(d) Using the result from part (c), the most stable configuration should be when the dipoles all form one line,
pointing in one direction: →→→→→.
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3. Griffiths 6.26 The angle θ1 is related to the components of B1 which are parallel and perpendicular to the

interface: tan θ1 = B
‖
1

B⊥
1
. The same relation holds for θ2 and B2. The perpendicular components of B are

continuous across the boundary, so B⊥
1 = B⊥

2 . We also know that the parallel components of H are continuous
across the boundary, since there is no free surface current. Since B = µH this gives: H

‖
1 = H

‖
2 ⇒ 1

µ1
B

‖
1 =

1
mu2

B
‖
2 . Putting these together:

tan θ2

tan θ1
=

B
‖
2

B⊥
2

B⊥
1

B
‖
1

=
B

‖
2

B
‖
1

=
µ2

µ1

4. Griffiths 7.3

(a) To find the resistance, we need to look at the ration of the potential difference to the current flowing
between to metal objects. Any currents flowing will leave conductor 1 and flow to conductor 2. So we can
find the current by enclosing conductor 1 with a surface and then evaluating I =

∫
J · da. This equation

is exactly what we need. First, Gauss’s law tells us
∫
E · da = 1

ε0
Qenc, while Ohm’s law gives J = σE

and V = IR. We assume there are no free charges floating around in our conducting material, so Qenc

is simply the charge on the first object, which is related to the capacitance of the system by Q = CV .
These are all the ingredients we need.

I =
∫

J · da = σ

∫
E · da = σ

ε0
Q =

σ

ε0
CV =

σ

ε0
CIR ⇒ R =

ε0
σC

.

(b) We apply a potential difference V0 between objects 1 and 2 and then allow the charge to leak off. The
voltage at any time is given by V (t) = I(t)R = −dQ

dt R, where the minus sign comes because we assume
the current I is positive, but we know the charge Q is decreasing. We also know that V = Q/C, so that
tells us dV

dt = 1
C

dQ
dt , because capacitance is just a constant. Thus V (t) = −RC dV

dt ⇒ dV
dt = − 1

RC V (t) ⇒
V (t) = V (0)e−t/RC = V0e

−t/RC . Then the time constant τ = RC = ε0/σ.

5. Griffiths 7.7

(a) Current will flow due to the changing flux in the loop formed by the bar and the wire. The total flux
through the loop is Φ = BA. If the bar is moving at speed v to the right, the area is changing at a rate
of dA

dt = lv. Thus E = −dΦ
dt = −Blv. Then E = IR ⇒ I = Blv/R. The minus sign just refers to the

direction, but it is easier to figure that out using Lenz’s law. Since the flux into the page is increasing,
the current will flow to produce flux coming out of the page, so the current will be going down through
the resistor.

(b) There is magnetic force on the bar because there is a current flowing in the presence of a magnetic field.
F =

∫
Idl×B = IlB = B2l2v/R and it points to the left, which is the direction of dl×B.

(c) The force on the bar is slowing it down so we take it to be negative.

F = − 1
R

B2l2v = ma = m
dv

dt
⇒ dv

dt
= −B2l2

Rm
v ⇒ v(t) = v0e

−B2l2t/Rm.

(d) The energy goes into heading the resisitor. The power delivered to the resisitor is

P =
dW

dt
= I2R =

B2l2

R
v2
0e

−2αt, where α =
B2l2

Rm
; ⇒ dW

dt
= αmv2

0e
−2αt.

The bar keeps slowing down, but takes an infinite amount of time to stop. During this time, the total
energy delivered to the resistor is

W = αmv2
0

∫ ∞

0

e−2αt dt = αmv2
0

e−2αt

−2α
∣∣∣∣
∞

0

= αmv2
0

1
2α

=
1
2
mv2

0 .
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6. Griffiths 7.11 Let l be the width of the loop, and s be the distance between the top edge of the loop and
the bottom of the region of B-field. The flux through the loop is Φ = Bla, so E = −dΦ

dt = −Bl ds
dt . Let’s only

consider magnitudes and drop the minus sign. Since ds
dt = v(t), the velocity of the loop at time t, we have

E = Blv = IR, assuming the loop has resistance R. Then I = Blv/R is the current flowing in the loop. As
the loop falls, the flux into the page is decreasing, so the current flows in a clockwise direction to oppose the
change in flux. But the part of the loop still in the region of magnetic field will feel a force because there is
a current in a magnetic field. The forces on the two sides will cancel, leaving an upward force of magnitude
F = IlB = B2l2v/R. This force opposes the force of gravity, Fg = mg which pulls the loop downward. The loop
will have reached terminal velocity, vt, when these two forces balance: mg = B2l2vt/R ⇒ vt = (mgR)/(B2l2).

To find the velocity as a function of time, we need Newton’s second law: Fnet = ma = mdv
dt = mg − B2l2

R v

where I have taken the downward direction to be positive. Letting α = B2l2/mR, we have vt = g/α, and we
get a differential equation for the velocity:

dv

dt
= g − αv ⇒ dv

g − αv
= dt ⇒ − 1

α
ln(g − αv) = t+ const. ⇒ g − αv = Ae−αt

Since the loop starts at rest at t = 0, the constant A = g. Thus v(t) = g
α (1− e−αt) = vt(1− e−αt). At 90% of

terminal velocity we have v/vt = 0.9 = 1− e−αt ⇒ e−αt = 0.1 ⇒ t = 1
α ln 10 = vt

g ln 10.

To get a numerical answer, we need various properties of aluminum and the dimensions of the loop. Assume
the loop is square, with sides l and cross-sectional area A. The resistivity is ρ = 1

σ = 2.65 × 10−8 Ω m; the
mass density is η = 2.7 × 103 kg/m3; g = 9.8 m/s2; and B = 1 T. The resistance of a piece of metal with
uniform cross-sectional area A and length L is R = L

Aσ , so in this case we have R = 4lρ
A .

vt =
mgR

B2l2
=

(ηA4l)g(4lρ/A)
B2l2

=
16ηgρ
B2

= 1.1 cm/s; ⇒ t90% =
vt

g
ln 10 = 2.8 ms

Finally, if the loop were cut, no current would flow, so there wouldn’t be any force to oppose gravity and the
loop would fall freely under the force of gravity.

7. Griffiths 7.17

(a) We assume that the solenoid is relatively long, so the only magnetic field in the loop is the uniform
B-field inside the solenoid, namely B = µ0nI. Thus the flux passing through the loop is Φ = πa2B =
πa2µ0nI ⇒ E = −πa2µ0n

dI
dt . The negative sign just refers to the direction, which is easier to find

using Lenz’s law, so we’ll ignore it. The magnitude of the current passing through the resistor is given by
E = IrR ⇒ Ir = 1

Rπa2µ0nk. The flux due to the solenoid is pointing to the right and is increasing, thus
the current in the loop will flow in order to produce a flux inside the loop pointing to the left, which is
opposite the direction of the current flowing in the solenoid, or to the right in the picture in the text.

(b) When the solenoid is pulled out and reinserted there is lots of changes going on in the flux, most of them
very complicated. But all we need to know to get the total charge is the total change in flux.

∆Q =
∫

I dt =
∫ E

R
=

∫
− 1

R

dΦ
dt

= − 1
R
(Φf − Φi) ⇒ ∆Q =

1
R
∆Φ (in magnitude)

Initially there is flux Φi = πa2µ0nI pointing to the right, and at the end there is the same amount of
flux pointing in the opposite direction, the net change in flux is ∆Φ = 2πa2µ0nI, which means ∆Q =
1
R2πa

2µ0nI.

8. Griffiths 7.48 Starting with Equation (5.3), we have qBR = mv. Keeping R fixed, we can differentiate
with respect to time: qR dB

dt = mdv
dt = ma = F = qE. Thus E = R dB

dt , where B is evaluated at the radius
of the electron’s orbit, R. From Faraday’s law we know

∮
E · dl = −dΦ

dt , so if we take the loop to be the
electron’s orbit at radius R, 2πRE = −dΦ

dt . Combining this with the previous result we can solve for B:
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dB
dt = − 1

2πR2
dΦ
dt ⇒ B = − 1

2

(
Φ

πR2

)
+ C where C is some integration constant. If B = 0 when t = 0, there

will be no flux through the loop, so the constant must be zero. But this means B(R) = − 1
2

(
Φ

πR2

)
. The term

in parentheses is simply the total field throughout the orbit (flux) divided by the area of the orbit, namely
the average field. Thus the average field over the orbit is twice the value of the field at the circumference (in
magnitude).
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